オタクof数理の共同ブログ

京大情報学科数理工学コースの学生4人による共同ブログです

よねすけ

フーリエ級数の一様収束性

こんにちは、よねすけです。院試勉強してると色々気づきがあって面白いです。大半は面白くないですが。周期的な可積分関数のフーリエ級数がどのようなときに元の関数に収束するかについては色々な議論がなされています。例えば周期的連続関数でフーリエ級数…

Ker(f)

こんにちは,よねすけです.院試勉強まじでだるいです.落ちたくないので頑張ります.線形代数の復習をしてて何となく群論に似ているところがあるなあと思ったので書いときます.証明は書きません. 上のベクトル空間について線形写像を考えます.このとき,はの線形…

メルカトル級数とライプニッツ級数

こんにちは、よねすけです。TOEICの点数が返ってきました。なななんと!!!945点!!!とても嬉しい点数でした!!!ちなみに『なななんと』は『ララランド』を意識しました。メルカトル級数やライプニッツ級数を導出する方法はいろいろと知られていますが…

二重級数

先日、塾講をしているときに出てきた問題が面白かったのでここに取り上げることにしました。 次の無限級数の和を求めよ。 まずは普通に解いてみましょう。 とおいてみると、は次のようになります。 これより上の無限級数の部分和を求めると、 よって無限級数…

古典電子半径

こんにちは、よねすけです。理論電磁気学作者: 砂川重信出版社/メーカー: 紀伊國屋書店発売日: 1999/09メディア: 単行本購入: 2人 クリック: 29回この商品を含むブログ (28件) を見るこの本を久しぶりに眺めていたら古典電子半径の話が載っていて初見だった…

Mayerの式を2通りの証明で

こんにちは、よねすけです。Mayerの式を2通りで示したいと思います。Mayerの式とは、理想気体の等圧モル比熱、等積モル比熱との間にの関係式が成り立つことを言います。ここでは気体定数です。 熱力学的関係式を用いる これは至ってシンプルな計算により求ま…

ポアソンの式の一般化

こんにちは、よねすけです。今回はポアソンの式の一般化を試みたいと思います。 そもそもポアソンの式とは、理想気体の断熱過程において圧力と体積がの関係で結ばれる式のことです。ここでは等圧比熱と等積比熱を用いて、と表されます。 証明は熱力学第一法…

not a cloud in the sky

こんにちは、よねすけです。この前の木曜日かな、めっちゃ天気良くて授業始まる前に思わずパシャりと撮ってしまった写真。あまり天気の良さが伝わらんね笑 あと、後期の成績発表があって人生初のフル単でした!!!!めでたい!!!そんなわけでバーゼル問題…

おもろい図形

こんにちは, よねすけです. 円の中に一点を適当にとり, それを通る線分とそれに垂直な線分を上の図のようにとったとしましょう. このとき, 円の半径を用いてとなります. 図形に関する等式で個人的に一番好きなので今回紹介することにしました.この式の証明を…

判別式パート3

こんにちは, よねすけです.otaku-of-suri.hatenablog.com 以前3次方程式の判別式についてまとめました. 今回次方程式の特別な場合としてのの判別式を求めることが出来たので以下に記しておきます. 判別式と微分の関係については高木貞治の本を参考にしまし…

後期の振り返りするで。

こんにちは、よねすけです。後期のテストも随分前に終わって春休みに入っているのに振り返りをするのを忘れていたなあ、ということで振り返りを書きます。応用代数学(月曜2限) 群論の基本的な内容と表現論の初歩の内容を授業で扱いました。丁寧に授業を運…

正則言語

こんにちは, よねすけです. 正則言語 正則言語とは正則表現で表される言語のことです. 同値な表現方法として以下があります. 決定性有限状態オートマトン()で表される言語 非決定性有限状態オートマトン()で表される言語 遷移非決定性有限状態オートマトン()…

チューリングマシンが受理する言語

こんにちは, よねすけです.今回はチューリングマシンの話を書きたいと思います. 以下チューリングマシンをTMと省略します. 帰納的可算集合(Recursively Enumerable) 言語が帰納的可算集合であるとは, あるTMによってと書けることを言います. この集合をと書…

答え

こんにちは,よねすけです.前回の記事で,otaku-of-suri.hatenablog.com最後に証明を残したところがあるので,それだけ示したいと思います.示すべきことはにおいてです.二通りほど示し方を考えました. ダランベールの収束判定法を用いる ダランベールの収束判定…

おもろい式

こんにちは,よねすけです. 明日はじめて阪大に行くのが楽しみすぎて眠れない.遠足の前の日みたいや.高木貞治の『解析概論』をぼーっとめくってたら定本 解析概論作者: 高木貞治出版社/メーカー: 岩波書店発売日: 2010/09/16メディア: 単行本(ソフトカバー)…

自分で問題を作ってみたけれど...

おはこんばんにちは、よねすけです. 最近いろんな先生のホームページを見るのにはまっていて,そうしたら大体の先生が研究の事とかをブログに書いていることを知ったので,自分もこれからも続けていこうと思いました(なんの報告やねん).この前授業始まる前に友…

判別式パート2

こんにちは,よねすけです.少し前に三次方程式の判別式について長々と書きました.otaku-of-suri.hatenablog.comところが,ある日高木貞治の代数学講義を読んでいたら,代数学講義 改訂新版作者: 高木貞治出版社/メーカー: 共立出版発売日: 1965/11/25メディア: …

チェザロ平均

こんにちは,よねすけです.今回は数列のチェザロ平均というものついて書きたいと思います. 今までは数列(今回は複素数列を考える.)の級数が収束するというのは複素数列の級数について第部分和をと定めたときに,となるならば,級数和はに収束する,というふうに…

三角関数に関する不等式

こんにちは,よねすけです.今回は三角関数に関する不等式を示したいとおもいます.三角形の角,角,角についてとなります.これを面白い方法で示してみましましょう(受験数学では有名な手法なので読者の皆さんは知っていることかも知れませんが,,,).上のような図…

楕円の極座標表示

こんにちは,よねすけです. 今回は楕円の極座標表示の方法について書いてみたいと思います.式で表される楕円を書いてみました.このとき焦点はを用いて,と書けます。 このような楕円があったときに,極座標においての原点を点として図のように考える点と原点と…

面白い積分

こんにちは,よねすけです. 今回は最近目にした面白い積分について書きます.タンジェントの肩にが乗っているので一瞬びっくりしてしまうのですが,これは実は見掛け倒しのもので別にでも何でも良いことが分かります.あ,あとこの積分は広義積分になりますが,き…

フェルマーの小定理の証明

こんにちは、よねすけです。 今回はフェルマーの小定理を二通りで証明したいと思います。フェルマーの小定理とは、素数となる整数を考えたとき、 証明には数学的帰納法を用いるものと群の性質を用いるものがあります。 数学的帰納法による証明 まずは となる…

ウィルソンの定理の証明

こんにちは、よねすけです。久々の投稿になります。 今回はウィルソンの定理を二通りで証明したいと思います。ウィルソンの定理とは、有理素数を考えたとき、 証明方法としては、逆元を用いるものと原始根を用いるものがあります。 逆元を用いた証明 逆元に…

モジュラ逆数

よねすけです。今回は整数論を少しかじってみるよ。を有理素数とし、の時、 なる整数がただひとつ存在することが一般に知られています。(証明はが上の式を満たすとしてを示せる。) このときのをにおけるの逆元(モジュラ逆数とも)と言い、と書きます。 (競技…

円筒座標系におけるrotの表示

夏休みいかがお過ごしでしょうか。よねすけです。 今日は成績発表でしたね。僕は一科目だけ落としてたので異議申し立てするか迷っています。今回は円筒座標系におけるrotがどう表されるかについて書きたいです。(だいぶ昔の)ゼミの教科書で当たり前のよう…

前期の振り返りするで。

こんばんは、よねすけです。 3回前期が無事に(?)終わったのでいつもの様に振り返りを。今期は受けた授業がどれも面白かったです。月曜2限:工業数学A2 数値計算に関する授業でした。数値計算アルゴリズムをいっぱい聞けてその歴史についても少し学べたので面…

弾性体の振動の縦波と横波

よねすけです。振動波動論の試験で弾性体の振動に関する問題が出て勉強してなくて全く分かりませんでした。つらい。。。弾性体中の座標ベクトルの点の、時間における変位をとすると、弾性体の振動の方程式は で与えられます。ここでは弾性体の密度、はヤング…

無理数の無理数の無理数の・・・

こんにちは。世の大学生は試験前で忙しい頃ですね。僕ももれなく忙しいです。試験勉強頑張りましょうね。少し前にtsujimotterさんのこの記事が話題になりました。 tsujimotter.hatenablog.com この記事ではを用いて無理数の無理数乗の中で有理数になるものが…

数学のメモその3

今回は、一旦ゼータ関数を置いといてフーリエ解析に関することを書きます。 授業の中でPlancherel(プランシュレル)の定理というものを習いました、Plancherelの定理 :有界連続 というものなんですが授業ではさらっと流されて証明もプリントで、、、みたいな…

数学のメモその2

前回に続きの証明を書きたいと思います。 〜2重積分を用いる〜 この証明は2重積分 の値を2通リに求めることからわかります。1つ目はを等比級数に展開することです。 の2つ目の計算方法は変数変換です。 と変数変換します。するとより である。またヤコ…

数学のメモ

授業の演習問題での証明する問題が出たのでいろいろな証明を載せたいと思います。~フーリエ級数展開の利用~ についてこれは無限級数なのでフーリエ級数展開を用いることを考えます。(授業の演習問題はこの方法だった) 周期関数の複素フーリエ級数展開を計…

円周率は有理数です。

んな訳あるかい!!! ということで、どうもよねすけです。今日はエイプリルフールなのでこんな調子乗ったタイトルにしてみました。円周率が無理数、超越数であることは広く知られていることです。 が、その証明ってみんなあんまり知らないんじゃないかなあ…

クリストッフェル記号の変換則パート2

こんにちは、よねすけです。 今日は2次試験二日目ですね。受験生の方は今日くらいゆっくり休んで下さい(受験生このブログ読んでなさそう)。以前クリストッフェル記号の変換則について書きました。 otaku-of-suri.hatenablog.comその時はすっきりと変換則…

判別式

こんにちは、よねすけです。 春休み暇すぎて結構なペースで投稿してますねぇ(笑)今回は判別式と解の公式の関係について。 判別式といえば高校生の時に 『2次方程式の判別式は』 みたいなことを習ったと思います。実際、ならば異なる二つの実数解を持つ な…

クリストッフェル記号の変換則

こんにちは、よねすけです。今回はクリストッフェル記号の変換について。 クリストッフェル記号とは、 このときにへの座標変換を考えたときにクリストッフェル記号についてもの変換がわかるようにしたい。 (ダッシュ付きの添え字で変換後のものを表すことに…

後期の振り返り

お久しぶりです。よねすけです。無事にテストが終了して春休みを迎えました\(^o^)/ 前期と同じように振り返りをしようと思います!! ~10月 しょーみ実験そんなだるくないでしょとか舐め腐った考えで履修登録を考えて、上回履修を3つくらい入れた。ア…

Liouvilleの定理(複素解析)とその応用

こんばんは。よねすけです。今2回生ということで実験に追われているわけですが、この前返却されたレポートを見てみると20点満点で9点しかありませんでした笑 笑えないですね。もう少しまじめに実験に取り組むべきだった。。。さて、今回はLiouvilleの定理を…

正準変換(母関数を用いて)

おはこんばんにちは。よねすけです。 久しぶりの投稿です。今回は解析力学について。注意:以下ではアインシュタインの規約を用いているのでシグマがすべて省略されています。ラグランジュ形式ではという点変換について共変的(形が変わらない)でした。 それ…

前期を振り返るよ~~~

はじめまして。よねすけです。 自己紹介します!!! ほかのメンバーと同じ京大工学部情報学科数理工学コースです。 好きな歌手はTaylor Swift(テイラー・スウィフト)です!!! 好きな定食屋はハイライトです!!! こんな感じですかね。このブログでは思…