メルカトル級数とライプニッツ級数
こんにちは、よねすけです。
TOEICの点数が返ってきました。なななんと!!!945点!!!とても嬉しい点数でした!!!ちなみに『なななんと』は『ララランド』を意識しました。
メルカトル級数やライプニッツ級数を導出する方法はいろいろと知られていますが、今回は高木貞治の『解析概論』に載っていたある公式から導出することが出来たので紹介したいと思います。
- 作者: 高木貞治
- 出版社/メーカー: 岩波書店
- 発売日: 2010/09/16
- メディア: 単行本(ソフトカバー)
- 購入: 1人 クリック: 49回
- この商品を含むブログ (14件) を見る
とすれば、
はじめにこの証明に取り掛かろう(章末問題に載っていて証明が載っていない!!)としたんですが若干厄介でした。上式の左辺を次のように変形します。
このように書くのには訳があって、被積分関数の分母部分をべき展開する際に収束半径が問題になってくるからです。いまの区間では
としたいところなんですが、途中で出てきた極限の交換については言及しておかなければなりません。ここの極限操作を交換できることはAbelの定理と同様の証明を行うことで示されます。なのでこれは収束が確かめられるので極限の交換は正当化されます。これよりはじめの式が示されました。
の場合、左辺は
の場合、左辺は
このようにしてメルカトル級数、ライプニッツ級数が得られました。今回はAbelの定理を用いたのでAbelの定理の紹介もいつかしたいと思います。また、メルカトル級数、ライプニッツ級数の別の証明も紹介したいと思います。
それでは。